首页> 外文OA文献 >Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology
【2h】

Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology

机译:全基因组测序时代的质粒分类:在抗生素耐药性流行病学研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of ‘accessory genes’, such as antibiotic resistance genes, as well as ‘backbone’ loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g. replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made.
机译:质粒是细菌中普遍存在的染色体外遗传元件,通常可在宿主细胞之间传播。他们的基因组包括“辅助基因”的可变库,例如抗生素抗性基因,以及“骨架”基因座,这些基因座在质粒家族中大部分是保守的,并且经常参与关键的质粒特异性功能(例如复制,稳定遗传,迁移) 。根据它们的系统发育相关性将质粒分为不同类型,可以深入了解质粒介导的抗生素耐药性的流行病学。当前的分型方案利用与复制(复制子分型)或质粒迁移性(MOB分型)相关的骨架位点。基于常规PCR的质粒分型方法仍被广泛使用。随着全基因组测序(WGS)的出现,可以使用计算机模拟质粒分型方法分析大型数据集。但是,从流行的高通量测序仪进行短读可能很难组装,因此可能无法准确地重建完整的质粒序列。因此,将抗性基因定位于特定质粒可能很困难,从而限制了流行病学的认识。随着成本的下降,长读测序将变得越来越流行,尤其是当解决精确质粒结构成为主要目标时。这篇综述讨论了质粒分类在基于WGS的抗生素耐药性流行病学研究中的应用。重点介绍了新型计算机质粒分析工具。由于质粒基因组的多样性和可塑性,当前的分型方案无法对所有质粒进行分类,因此要确定用于分型和系统发育的保守的,系统发育上一致的基因是具有挑战性的。在代表质粒之间基因共享关系的网络中将质粒作为节点进行分析,为评估质粒多样性提供了一种补充方法,并可以推断出水平基因转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号